Cochlear phase and amplitude retrieved from the auditory nerve at arbitrary frequencies.

نویسندگان

  • Marcel van der Heijden
  • Philip X Joris
چکیده

It is currently impossible to mechanically measure the overall vibration pattern of the intact mammalian cochlea because of its inaccessibility and vulnerability. At first sight, data from the auditory nerve are a poor substitute because of their limited temporal resolution. The nonlinear character of neural coding, however, causes low-frequency interactions among the components of multitone stimuli. We designed a novel stimulus for which these interactions take a particularly systematic form, and we recorded the response of the auditory nerve to this stimulus. A careful analysis of interactions in the data allowed us to reconstruct frequency transfer functions (both their amplitude and their phase) at multiple points spanning the entire length of the cochlea. The generic character of our stimuli and analysis suggests its wider use in nonlinear system analysis, particularly in those instances in which limitations in temporal resolution restrict the use of customary methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Slope of Amplitude Growth Function Changes of the Electrically Evoked Action Potential in Three Months after Receiving the Device in Children with Cochlear Implant

Objective: In neural response telemetry, intracochlear electrodes stimulate the auditory nerve and record the neural responses. The electrical stimulation is sent to the auditory nerve by an electrode and the resulted response, called electrically evoked compound action potential, is recorded by an adjacent electrode. The most important clinical applications of this test are evaluation and moni...

متن کامل

Encoding of amplitude modulation in the cochlear nucleus of the cat.

1. Amplitude modulation (AM) is a pervasive property of acoustic communication systems. In the present study we investigate neural temporal mechanisms in the auditory nerve and cochlear nuclei of the pentobarbital sodium-anesthesized cat associated with the neural coding of 100% AM tones, both in quiet and in the presence of wideband, quasi-flat-spectrum noise. The AM carrier frequency was set ...

متن کامل

Session 3aNSa: Wind Turbine Noise I 3aNSa6. Amplitude modulation of audible sounds by non-audible sounds: Understanding the effects of wind turbine noise

Our research has suggested a number of mechanisms by which low-frequency noise could bother individuals living near wind turbines: causing endolymphatic hydrops, exciting subconscious pathways, and amplitude modulation of audible sounds. Here we focus on the latter mechanism, amplitude modulation. We measured single-auditory-nerve fiber responses to probe tones at their characteristic frequency...

متن کامل

Proceedings of Meetings on Acoustics

Our research has suggested a number of mechanisms by which low-frequency noise could bother individuals living near wind turbines: causing endolymphatic hydrops, exciting subconscious pathways, and amplitude modulation of audible sounds. Here we focus on the latter mechanism, amplitude modulation. We measured single-auditory-nerve fiber responses to probe tones at their characteristic frequency...

متن کامل

Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba.

The auditory system of the barn owl is an important model for temporal processing on a very fast time scale and for the neural mechanisms and circuitry underlying sound localization. Phase locking has been shown to be the behaviorally relevant temporal code. This study examined the quality and intensity dependence of phase locking in single auditory nerve fibers of the barn owl to define the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 27  شماره 

صفحات  -

تاریخ انتشار 2003